Commissioning of new DC muon beam line, MuSIC-RCNP at Osaka University

Dai Tomono

Research Center for Nuclear Physics (RCNP), Osaka University

On behalf of the MuSIC-RCNP collaboration

tomono@rcnp.osaka-u.ac.jp

Outline

1. MuSIC beamline
2. Beam commissioning (yield and spin measurement)
3. MuSIC status
4. Summary
MuSIC beamline at RCNP, Osaka University

MuSIC (Muon Science Innovative muon beam Channel) beamline?

- pion capture solenoid + pion collection solenoid + conventional triplet-Q & bends beamline
- world’s most efficient DC muon beam source (~ 10^3)

Present status
- 10^8 muons are obtained at the curved solenoid end
- construction of whole beamline is almost completed
- beam commissioning with 20nA proton beam
- prepare experimental port and apparatus
MuSIC Beamline
MuSIC - RCNP by Dai Tomono@PSI2016 19/Oct/2016

Research Center for Nuclear Physics (RCNP), Osaka University

- MuSIC @ RCNP, Osaka Univ.
- Ring Cyclotron ~392MeV (variable)
 - 1uA proton, (0.4kW)
- MuSIC M1 beamline
- MUSE @ J-PARC
 - Pulsed muon source

MuSIC @ RCNP, Osaka Univ.
- DC muon source
- only 100 MeV above pion production threshold (〜2mπ)
- muon source with low proton power (1uA 0.4kW, 5 uA in future)
Experimental port

Triplet-Q

Spin rotator & DC separator

µ/e/π

μon Beam Line @RCNP

MuSIC-M1 Beam Line

ST1 ST2

Triplet-Q

BM1

BM2

+/− 400 kV / 15cm gap
L = 1.8 m

• muon / electron separation
• rotate spin with 80 degree for surface muon
• Now in commissioning

Pion capture solenoid

MuSIC-RCNP by Dai Tomono@PSI2016 19/Oct/2016
Comparison of pion production methods

Conventional muon beamline

- Thin target (~20mmt)
- Small solid angle
- Separate pion and muon momentum selection (obtain highly polarized muon beam)

Ex. J-Parc MUSE
1000 kW proton beam
20mmt graphite target

Proton beam loss ~ 5%

to neutron facility

MuSIC beamline

- Thick target (200mmt)
- Large solid angle, good collection efficiency
- No muon spin selection (no selection of pion/muon momentum)

Ex. MuSIC
0.4 kW proton beam
200 mmt graphite target

Transport solenoid

Capture solenoid

Collect π / μ
with 3.5T solenoidal field

to dump
Pion capture solenoid & Pion transport solenoid

- Pion capture solenoid (3.5T)
 - pion production target inside (1.5 interaction length)
 - pion collection with large solid angles
- Pion transport solenoid (2.0T)
 - Curved solenoid to capture and transport pion/muon
 - Momentum selection with dipole collection field

Graphite target

Beam Profile by G4beamline simulation

Surface muon
Inflight-decay muon

Pion Capture Solenoid

exit of the 36° curved solenoid
~ 3x10^8 positive muons
~ 1x10^8 negative muons

~ 10^3 pion production efficiency
Beamline Commissioning
Experimental port (at the beamline end)

Now commissioning is in progress
Muon yield measurement

Inflight-decay muons (μ±)

- Negative muon
 - ~$1 \times 10^5 \mu^-/s$ @60MeV/c with 1μA proton beam

- Positive muon
 - ~$7 \times 10^5 \mu^+/s$ @60MeV/c with 1μA proton beam

Surface muon (μ⁺)

- Succeed in observing surface muons (~28 MeV/c)
 - ~$3 \times 10^4 \text{ surface } \mu^+/s$ @ 28 MeV/c with 1 mA proton beam

Inflight-decay muons

Note:
- Muon yield (vertical axis) is scaled for 1μA proton beam operation.
- 20nA (2016 run) -> 1μA (2017 run)

Beam counter (plastic scintillator)
- (10cmx 10cm)

Succeed in observing surface muons (~28 MeV/c)

- Target position tuned for surface muon

TOF Setup
- Beamline ~ 20m
- $\Delta t = t_{\text{counter}} - t_{RF}$
Beam profile measurement

Beam profile at the beamline end (beam focusing position) \(p = 28 \text{ MeV/c} \)

- slit fully opened \(80 \text{ mm x 80 mm} \)
- slit \(\pm 30\text{mm} \) opened \(50 \text{ mm x 50 mm} \)

Profile monitor

- 1mm\(\phi \) thin scintillation fiber + MPPC readout
- Separate e / \(\mu \) by their energy deposit difference
- 8mm~2mm interval (dense around the center)

• simulation (turtle)
• measured
Spin measurement

- Muon beam at the solenoid end (G4 beamline output)
- Separate forward and backward decay muons to investigate beam polarization
- Calculate the expected polarization geometrically and compare the experimental results

Setup

\[
A_{asy}(t) \equiv \frac{N_u(t) - \alpha N_d(t)}{N_u(t) + \alpha N_d(t)}
\]

TF = 40 Gauss

MuSIC-RCNP by Dai Tomono@PSI2016 19/Oct/2016
Spin precession results

Typical observed asymmetry spectra

$\propto A \cos(\gamma_{\mu} Bt + \delta_0)$ γ_{μ} : Lamor frequency

$p = 28$ MeV/c

$p = 60$ MeV/c

Measured polarization

<table>
<thead>
<tr>
<th>Momentum [MeV/c]</th>
<th>Polarization (G4 simulation)</th>
<th>Polarization (measured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 (surface μ)</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>57</td>
</tr>
</tbody>
</table>

Positive muon momentum

Preliminary (simulation with G4 beamline)

Cancel

Polarization (spin←)
Muon Science at MuSIC

● **Stage 0**
 — proof-of-principle for muon capture and transport solenoid (also for COMET experiment)
 — high efficiency (~ 10^3) muon production was achieved (measured at the capture solenoid end)

● **Stage 1(2012-16)**
 — Conventional triplet-Q and bend magnets were installed successively to the collection solenoid.
 — Beam commissioning is now in progress
 — Physics programs start
 • Muonic X-ray analysis and non-destructive analysis
 • Chemistry on muonic and pionic atoms
 • non-destructive element analysis (ex, from asteroid explorer, Hayabusa-II)
 • Probes for condensed matter physics (DC-µSR), Feasibility tests are now in progress

● **Next stage and future**
 — Muonic X-ray analysis
 — DC-µSR study for users
 — Nuclear physics
 • Nuclear muon capture for 0νββ study (for nuclear matrix element determination, proposed)
 • Gamma-ray measurement from nuclear capture with heavy nuclei
 • Nuclear physics combined with the high resolution / acceptance spectrometer in RCNP (prospects)
 — Improvement of the beamline
 — new physics programs

We are now in this stage (2016)
First experiment (μ^-): muonic X-ray & gamma-ray measurement

First MuSIC beamline experiment for users (E411)

9th – 11th Nov., 2015

Fundamental study for non-destructive elemental analysis with muon for analyzing planetary materials brought by ”Hayabusa2”

From: K. Terada (Osaka U.) MXG16 slide
Demonstration of fast spin precession with DC muon beam

- muon spin precession spectra

![Setup diagram](image)

TF = 40, 580 Gauss

Asymmetry, $A(t) = \frac{N_u(t) - \alpha N_d(t)}{N_u(t) + \alpha N_d(t)}$

- **Spin asymmetry**

Setup

- Trigger counter (0.5mmt)
- Upstream counters (4mmt) x2
- Test sample (Ag plate)
- Downstream counters (4mmt) x2

Time resolution ~ 1ns

T~80 ns (typical magnetic order)

$B = 40G$ (slow precession)

$B = 580G$ fast precession was observed

- possibility of DC μSR (proof for high time resolution precession)
Summary

- New innovative DC muon source with solenoid system has been developed at RCNP, Osaka University
 - good pion production efficiency of $\sim 10^3$
 - pion capture & transport solenoid + triplet-Q and bend magnets beamline

- Beamline commissioning is now in progress
 - 28 MeV/c – 110 MeV/c muon beam
 - inflight-decay $\mu^+ 10^5-10^6 \mu^- 10^5-10^6$ surface $\mu^+ 3 \times 10^4$ [count/sec/1uA proton beam]
 - beam size ($<80\text{mm}\phi$), momentum bite ($<10\%$) and polarization ($\sim 60\%$) were measured
 - start feasibility study
 - Improvement of muon beam (especially, solenoid and triplet-Q connection)

- Physics program in MuSIC
 - nuclear physics (muon capture)
 - radio-chemistry and non-destructive evaluation of elements
 - positive muon for μSR measurement (feasibility study to practical physics program)
 - MuSIC beamline will be a highly intense DC muon source. has possibility to perform DC muon source