The Mu3e experiment

- Search for Lepton Flavor Violation
 - Decay $\mu^+ \rightarrow e^+ e^- e^-$
 - Standard Model: $Br < 10^{-34}$
 - Can be enhanced in New Physics (SUSY, BSM, etc.)
- Current status: $Br < 10^{-12}$ (SINDRUM)
- Mu3e:
 - Location: Paul Scherrer Institute
 - Phase I: $Br < 10^{-15}$, Phase II: $Br < 10^{-16}$

<table>
<thead>
<tr>
<th>Mu3e detector</th>
</tr>
</thead>
</table>

Pixel layers:
- High Voltage Monolithic Active Pixel Sensor - HVMAPS
 - NIM A582 (2007) 876-885
 - 2×2 cm², 80×80 mm² pixels
- Thin: $50 \mu m \approx 10^{-2}X_0$
- Efficiency > 99%

Triplet fit
- Basic block for track reconstruction
- 3 hits (combination of 2 helices)
- Neglect energy loss and hit position uncertainty

Triplet fit (arXiv:1606.04990):
- Minimizes scattering angle in middle hit
- Linear approximation around circle solution (small Multiple Scattering angles)

Track fit:
- Track is a sequence of triplets
- Fit + weighted average of triplets

Efficiency and resolution

- Short tracks (4 hits):
 - Acceptance: 80%
 - Reconstruction efficiency: 95%
 - Geometrical and χ^2 selections
 - $\sigma_{p} \approx 1.4 \mathrm{MeV/c}$

- Long tracks (6 and 8 hits):
 - 80% of short tracks are reconstructed as long
 - Gaps between stations
 - $\sigma_{p} \approx 0.1 - 0.5 \mathrm{MeV/c}$
 - ≈ 10 better than for short tracks

GPU filter farm
- Need factor 100 data rate reduction
- Full online reconstruction
 - Track and vertex reconstruction
- Implemented on GPU
- Currently $O(10^9)$ track fits/s

$\mu^+ \rightarrow e^+ e^- e^-$ signal and background

- **Signal:**
 - Three tracks
 - Decay at rest
 - $p_{\mu} < 53 \mathrm{MeV/c}$
 - Common vertex
 - Same time
 - $\sum p = 0$
 - $\sum E = m_{\mu}$

- **Background:**
 - Internal conversion
 - $\mu^+ \rightarrow e^+ e^- e^- e^-$
 - Random combinations
 - Michel: $\mu^+ \rightarrow e^+ \nu
 - $e^- e^+$
 - Fake tracks
 - Not same vertex, time, etc.

Track reconstruction

- Make triplets:
 - Hits in first 3 layers
 - $O(n_{hit})$ combinations
 - Fake rate $\approx 4 \times$ true rate
 - Seeds for long tracks

- Short (4 hits) tracks:
 - Add 4th hit to triplet
 - Fake rate ≈ 0.25
 - Seeds for long tracks

- Long (recur) tracks:
 - Combine 2 short tracks or
 - Combine short track with 2 hits in outer layers

Fibre and tile timing

- Fibre clusters and tile hits are linked to:
 - Seeds for long tracks
 - Two fibre clusters
 - Combine short track with 2 hits in outer layers

- Time difference between 2 fibre clusters

Signal sensitivity

- Signal sensitivity of 10^{-14}
 - at 10^8 stopped muons

Selections:
- Long tracks
- Vertex $\chi^2 < 14$
- Track/vertex $DCA < 1 \mathrm{mm}$
- $|\sum p| < 4 \mathrm{MeV/c}$
- Efficiency 14%