TRIUMF

- TRIUMF is Canada’s national laboratory for particle and nuclear physics. It is located in Vancouver, BC.
- An ultra-cold neutron (UCN) source and neutron electric dipole moment (nEDM) experiment are currently under construction at TRIUMF.

The nEDM measurement with Ramsey’s method of separated oscillatory fields

- Neutrons enter a cylindrical storage cell polarized in the positive z direction (vertically).
- Two static fields are present: A magnetic field acting in the positive z direction (B_z), and an electric field acting parallel or anti-parallel to B_z (E Parallel or anti-Parallel).
- Since we know $\omega = -2\gamma B_z = -2\delta$, by running the simulation with E_z, then with B_z, we can determine the EDM.
- A rotating field, B_z, is applied in the xy plane at frequency ω_0 for a time τ. This will flip the spin by some amount.
- The neutrons are then allowed to precess freely for a time T. After this, the B_z field is applied again for a time τ.
- The number of spin up and spin down neutrons are counted.
- This is repeated for 4 different ω_0 values (as in the graph below), and done for both E_z and E_{xy}.
- ω_0 is calculated between E_z and E_{xy}. The EDM can then be determined: $d_e = \frac{\omega_0}{4\gamma}$.
- A non-zero value of the nEDM has not yet been discovered. Currently we know $|d_e| < 2.9 \times 10^{-26}$ ecm [2].

PENTrack

- PENTrack is a free Monte Carlo program for tracking Protons, Electrons, and Neutrons.
- Recent changes make it possible to run full simulations of Ramsey’s method of separated oscillatory fields, and track the spin of Neutrons, Xenon, and Mercury.
- EDM simulator Features:
 - Analytical and/or numerical B_z, B_{xy}, and E fields.
 - Spin tracking, Larmor frequency tracking, simultaneous E_z and E_{xy}.
 - Compensation for EvE effect.
 - Geometry import from .sl file (Ability to design with most 3D CAD programs).

Effect of Magnetic Field Gradients on Larmor frequency

- The Larmor frequency is close to $\omega_0 = -\gamma B_z$; however, there are some factors that will shift it from this value.
- These shifts need to be accounted for in order to achieve the high precision required in the nEDM experiment.
- Magnetic field inhomogeneities account for a significant portion of the systematic error in the most accurate nEDM experiment [2].
- Here, the effect of magnetic field inhomogeneities on the Larmor frequency are simulated by running Ramsey cycles similar to the real experiment.
- Parameters used: $B_z = 1 \text{ mT}$, $B_{xy} = \pi$, $B_{xy} = B_z/2$, $T = 50 \text{ s}$, $\tau = 1 \text{ s}$, $E = 0$.
- B_{xy} denotes a linearly oscillating B_z field, and B_{xy} denotes a circularly oscillating B_z field.
- The neutron energy distribution is taken from a filling simulation for TRIUMF’s Phase 2 nEDM experiment.
- EDM cell height $H = 14 \text{ cm}$, radius $R = 18.1 \text{ cm}$.
- The ω_0 values shown are calculated assuming $E = 1 \times 10^8 \text{ V/m}$ (Proposed electric field strength of TRIUMF’s Phase 2 nEDM experiment).

<table>
<thead>
<tr>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29.164695302</td>
<td>-29.165092779</td>
<td>-29.166077779</td>
<td>-29.167062779</td>
</tr>
</tbody>
</table>

Mathematical Section

- Larmor frequency shift due to average UCN height in the EDM cell [5]
 $$\omega_0 = \omega_0 + \omega_0 \gamma B \beta$$
 (1)
 - ω_0 is the neutron’s gyromagnetic ratio, β is the average UCN height, and γ is the gyromagnetic ratio of the cell, g, and is gravity, and H is the height of the cell. The right hand of Equation 2 applies for neutrons that can reach the top of the cell (and assuming specular reflection).
- The Becch庭-Segn (BS) shift [5]
 $$\omega_0 = \omega_0 \gamma B \beta$$
 (3)
 - The BS shift applies if the B field is oscillating in 1 dimension only (B_{xy}).
- The Geometric Phase Effect (GPE) [6]
 $$\omega_0 = \omega_0 \gamma B \beta$$
 (4)
 - γ is the speed of light, ω_0 is the velocity in the xy plane, H is the radius of the storage cell and γ is the ratio of the path in the y direction, and γ is the ratio of the path in the x direction. Equation 5 applies when there is polarized reflection, and Equation 7 applies when there is specular reflection.

<table>
<thead>
<tr>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
<th>ω_0 (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29.164695302</td>
<td>-29.165092779</td>
<td>-29.166077779</td>
<td>-29.167062779</td>
</tr>
</tbody>
</table>

Geometric Phase Effect

- The GPE will create a false EDM signal in the experiment.
- The parameters and procedure of this simulation are similar to the simulation above.
- Simultaneous E_z and E_{xy} spin tracking is used (Therefore, no is expected).
- Only one neutron velocity is used.
- $E = 1 \times 10^8 \text{ V/m}$ (to magnify effect).
- Some possible reasons for discrepancies are resolution/accuracy issues in PENTrack, or that Equations 5 and 7 are not valid for this situation.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Specular reflection</th>
<th>Partly diffuse reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>ω_0</td>
<td>ω_0</td>
</tr>
<tr>
<td>3 m/s</td>
<td>3 m/s</td>
<td>3 m/s</td>
</tr>
<tr>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
</tr>
<tr>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
<td>$2.78 \times 10^{-22} \text{ ecm}$</td>
</tr>
<tr>
<td>$2 \times 10^{-20} \text{ ecm}$</td>
<td>$2 \times 10^{-20} \text{ ecm}$</td>
<td>$2 \times 10^{-20} \text{ ecm}$</td>
</tr>
</tbody>
</table>